Tuesday, October 25, 2016

Most Cited Article: Cytochromes P450 and Skin Cancer: Role of Local Endocrine Pathways

Cytochromes P450 and Skin Cancer: Role of Local Endocrine Pathways

Author(s):
Andrzej T. Slominski, Michal A. Zmijewski, Igor Semak, Blazej Zbytek, Alexander Pisarchik, Wei Li, Jordan Zjawiony and Robert C. TuckeyPages 77-96 (20)
Abstract:

Skin is the largest body organ forming a metabolically active barrier between external and internal environments. The metabolic barrier is composed of cytochromes P450 (CYPs) that regulate its homeostasis through activation or inactivation of biologically relevant molecules. In this review we focus our attention on local steroidogenic and secosteroidogenic systems in relation to skin cancer, e.g., prevention, attenuation of tumor progression and therapy. The local steroidogenic system is composed of locally expressed CYPs involved in local production of androgens, estrogens, gluco- and mineralo-corticosteroids from cholesterol (initiated by CYP11A1) or from steroid precursors delivered to the skin, and of their metabolism and/or inactivation. Cutaneous 7-hydroxylases (CYP7A1, CYP7B1 and CYP39) potentially can produce 7-hydroxy/oxy-steroids/sterols with modifying effects on local tumorigenesis. CYP11A1 also transforms 7-dehydrocholesterol (7DHC)→22(OH)7DHC→20,22(OH)2-7DHC→7-dehydropregnenolone, which can be further metabolized to other 5,7- steroidal dienes. These 5,7-dienal intermediates are converted by ultraviolet radiation B (UVB) into secosteroids which show pro-differentiation and anti-cancer properties. Finally, the skin is the site of activation of vitamin D3 through two alternative pathways. The classical one involves sequential hydroxylation at positions 25 and 1 to produce active 1,25(OH)2D3, which is further inactivated through hydroxylation at C24. The novel pathway is initiated by CYP11A1 with predominant production of 20(OH)D3 which is further metabolized to biologically active but non-calcemic D3-hydroxyderivatives. Classical and non-classical (novel) vitamin D analogs show pro-differentiation, anti-proliferative and anticancer properties. In addition, melatonin is metabolized by local CYPs. In conclusion cutaneously expressed CYPs have significant effects on skin physiology and pathology trough regulation of its chemical milieu.
Keywords:
CYP, melatonin, secosteroids, skin cancer, steroids, vitamin D.
Affiliation:
Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 930 Madison Avenue, RM525, Memphis, TN 38163.



For More Information Please Visit Our Website Anticancer Agent in Medicinal Chemistry



Wednesday, October 19, 2016

Podcast on Brain Delivery of Chemotherapeutics in Brain Cancer



Podcast Brain Delivery of Chemotherapeutics in Brain Cancer





Tuesday, October 4, 2016

New Issue ::: Anti-Cancer Agents in Medicinal Chemistry, 16 Issue 8





Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.

Articles from the journal Anti-Cancer Agents in Medicinal Chemistry, 16 Issue 8

For details on the articles, please visit this link :: http://bit.ly/2aYuKvJ